Why You Need These Four Essential Oils for Relieving Lyme Disease Insomnia and Brain Fog caused by Toxic Sinuses

Greg Blog Leave a Comment

Ernie_Banks_gum

For people with Lyme disease who have brain fog and insomnia due to toxic sinus infections
by Greg Lee

 

I loved collecting baseball cards as a kid. When I opened a new pack of cards, I was always filled with excited thoughts of, “Will I get a Willie Mays or a Hank Aaron?” And sometimes I only got cards that I already had multiple copies of, bless you Bob Burda. After finding out which cards I received, I got to enjoy a big pink stick of bubble gum. I got in big trouble once, when I put the gum in my pocket and it ended up going through the washer. Many of the other clothes ended up being stuck to pink gooey gum.

 

How is melted bubble gum that sticks to your clothes similar to toxic sinus infections in people with Lyme?

 

Just like gooey bubble gum, toxic infections can get stuck in the sinuses
In multiple studies, people with chronic sinus irritation have tested positive for a variety of different infections including: Staphylococcus aureus[1], Staphylococcus epidermidis[2], Streptococcus intermedius[3], Chlamydia[4], Clostridia[5], Mycoplasma[6], Nocardia nova[7], Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pyogenes, and anaerobic organisms: Prevotella and Porphyromonas, Fusobacterium, and Peptostreptococcus spp.[8] In immune compromised patients, multiple infections have detected including: Alternaria alternata[9], Aspergillus flavus[10], Mucormycetes[11], Fusarium[12], Cytomegalovirus[13], Bordetella petrii[14], Escherichia coli, Stenotrophomonas maltophilia, and basidiomycetous fungi (Schizophyllum commune)[15]. In rare cases, unusual infections that are mostly found in animals or soil have also been detected in sinus infections like: Staphylococcus pseudintermedius[16], and Paecilomyces variotii[17]. In other studies, dental infections have also been found to invade the sinuses[18]. Inflammatory markers can help to identify the types of infections in the sinus.

 

Inflammatory markers can give a clue to bacterial and fungal sinus infections
In sinus patients infected with Aspergillus and Alternaria, interleukin (IL)- 2, IL-4, IL-5, IL-10, tumor necrosis factor α, and interferon-γ were elevated[19]. Another study on chronic bacterial sinus infection patients showed that inflammatory markers IL-4, IL-8, IL-13 and Myeloperoxidase (MPO) were higher in the upper airway compared to the lower airway[20]. Sinus infections can also produce chronic physical problems and difficult emotions.

 

Sinus infections can affect physical as well as emotional symptoms
Severe sinus infections produce toxins which triggers inflammation and can lead to complications like irritability, decreased attention, anxiety, insomnia, depression[21], meningitis, abscesses in the brain[22], paralysis, tremors, weakness, blindness[23], sepsis[24], cerebral aneurysm[25], stroke[26], and death[27]. Elevated inflammatory compounds: IL-1β, IL-6, IL-8, and IL-13 were correlated with sleep disturbance and depression and may be an indicator of the severity of a sinus infection[28]. Unfortunately, these infections have multiple defense mechanisms to help them persist in the sinuses.

 

Toxic sinus infections can survive longer by hiding under multiple defenses
Sinus infections can be characterized by local inflammation, mucus discharge, immunoglobulin deficiency[29], pus, cysts, or polyps[30]. Sinus polyps have been found to have high levels of fibrin[31], which can isolate infections from your immune system and medications. Biofilms[32] are a slime produced by many different infections to protect against antimicrobial drugs, the killer cells of the immune system, and against other pathogens. Biofilms can increase drug resistance by a factor of ten to a thousand fold[33]. Biofilms are believed to be a main cause of recurring sinus infections that persist despite surgeries, multiple rounds of antibiotics or antifungals[34]. One study identifies nasal cysts, polyps, and mucus as likely places where infections can survive despite intravenous antibiotic treatment[35]. Unfortunately, patients with Lyme disease have also been found to have drug-resistant Staph bacteria.

 

Drug resistant Staph bacterial have been detected in the sinuses of Lyme patients receiving antibiotic treatment
Dr. Ritchie Shoemaker has found Multiple Antibiotic Resistant Coagulase Negative Staph (MARCoNS) infections in the sinuses of his patients receiving antibiotic treatment[36]. His protocol uses a nasal spray consisting of antibiotics along with biofilm dissolving EDTA. Unfortunately, the majority of health care providers treating Lyme patients are not following Dr. Shoemaker’s protocol.

 

What else can help people with Lyme disease to fight drug-resistant, biofilm forming, multi-species sinus infections?

 

Here are four essential oils that are effective at inhibiting infections and inflammatory compounds found in sinus infections
Fortunately, there are essential oils that have been found to inhibit many of the infections and biofilms that infect the sinuses and have also been effective at relieving pain, sleep problems, and difficult emotions. Preparing the remedies in a micronized form called a liposome, which are microscopic particles of medicinal oils that are wrapped in a lipid, increases their penetration into tissues and their antimicrobial, antibiofilm properties[37]. Which is why liposomal remedies may be highly effective at helping patients with penetrating into and eliminating persistent sinus infections and accompanying symptoms.

 

Sinus Infection Essential Oil #1: Tea Tree
In one wound study, liposomal tea tree oil combined with silver ions was effective at inhibiting Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans[38]. Tea Tree essential oil was also effective a reducing the size of wounds caused by methicillin-resistant Staphylococcus aureus (MRSA)[39]. Tea tree oil was also effective against Staphylococcus epidermidis, Escherichia coli, Saccharomyces cerevisiae[40], antibiotic resistant Candida spp.[41], Pseudomonas aeruginosa and its biofilm,[42] Aspergillus niger, Aspergillus flavus[43], Aspergillus fumigatus, Penicillium chrysogenum[44], Mycoplasma pneumoniae, Mycoplasma hominis and Mycoplasma fermentans[45], group A streptococcus[46], Fusarium graminearum, Fusarium culmorum, Pyrenophora graminea[47], Alternaria alternata, Botrytis cinerea and Fusarium oxysporum[48] in lab and animal studies.

 

In response to bacterial endotoxins, tea tree essential oil was effective at lowering inflammatory compounds IL-1β, IL-6 and IL-10[49]. In another lab study, tea tree oil decreased IL-2 and increased anti-inflammatory compound IL-4[50]. Caution: some cases have been reported where tea tree oil caused allergic dermatitis when placed on the skin[51]. In five cases, high doses of this oil internally, 0.5-1.0 ml/kg, have produced central nervous system symptoms of loss of coordination, drowsiness, unconsciousness, diarrhea, and abdominal pain[52]. In addition to tea tree oil, cinnamon has excellent antimicrobial properties.

 

Sinus Infection Essential Oil #2: Cinnamon Bark 
In unpublished lab research, cinnamon essential oil was effective at cutting through the Lyme biofilm and killing the bacteria. This oil is also effective at inhibiting: multi-drug resistant Pseudomonas aeruginosa and Escherichia coli toxin production and biofilms[53], multi-drug resistant strains of Salmonella typhi, Salmonella paratyphi A, Escherichia coli, Staphylococcus aureus, Pseudomonas fluorescens and Bacillus licheniformis[54], methicillin-resistant Staphylococcus aureus (MRSA)[55], Candida albicans[56], quorum sensing communication in drug resistant Chromobacterium violaceum and Pseudomonas aeruginosa[57], Haemophilus influenzae, Streptococcus pneumoniae, Streptococcus pyogenes[58], Campylobacter jejuni, Salmonella enteritidis, Listeria monocytogenes[59], Penicillium commune, P. roqueforti, Aspergillus flavus and Endomyces fibuliger[60].

 

In other studies which combine this oil and antibiotics, cinnamon bark essential oil helped to reduce drug resistance in multiple bacterial strains when combined with a beta-lactam antibiotic[61] and had a synergistic effect with gentamicin against multidrug-resistant Acinetobacter spp.[62]. Cinnamon oil has produced allergic dermatitis in some cases when placed on the skin. This oil may interfere with blood clotting. In one case, a boy drank 60 ml of cinnamon oil upon a dare and experienced symptoms of burning sensation in the mouth, chest and stomach, dizziness, double vision, nausea, vomiting and later collapse[63]. Another promising sinus antimicrobial remedy is thyme oil.

 

Sinus Infection Essential Oil #3: Thyme 
Thyme essential oil has been shown to inhibit Methicillin resistant Staphylococcus aureus (MRSA)[64], Staphylococcus aureus biofilms[65], Antibiotic-Resistant Candida spp.[66], Vancomycin-Resistant Enterococci[67], drug-resistant strains of Aspergillus spp. and Trichophyton rubrum[68],  Clostridium perfringens, Campylobacter jejuni[69], Listeria monocytogenes, Salmonella Typhimurium, enterohemorrhagic Escherichia coli, Brochothrix thermosphacta, Pseudomonas fluorescens[70], Zygosaccharomyces bailii[71], Staphylococcus, Enterococcus, Escherichia, Pseudomonas genera[72], Aeromonas species[73], Haemophilus influenzae, Streptococcus pneumoniae, and Streptococcus pyogenes[74].

 

In one mouse colitis experiment, thyme oil combined with oregano essential oil was effective at lowering IL-1beta, IL-6, GM-CSF, and TNFalpha[75]. Caution: thyme oil (geraniol chemotype) should not be taken in people with obstructed bile flow[76]. In addition to thyme, lemongrass has antimicrobial and antibiofilm properties.

 

Sinus Infection Essential Oil #4: Lemongrass 
Lemongrass essential oil has inhibited Staphylococcus aureus biofilms[77], drug-resistant strains of Actinomyces naeslundii, Porphyromonas gingivalis[78], methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), multi-drug resistant Pseudomonas aeruginosa, ESBL-producing Escherichia coli, Klebsiella pneumoniae[79], multi-drug resistant Candida albicans[80], multi-drug resistant strains of Streptococcus and Candida[81], and the Aeromonas hydrophyla biofilm[82].

 

Vaporized lemongrass oil combined with geranium oil inhibited MRSA, vancomycin-resistant Enterococci (VRE), Acinetobacter baumanii and Clostridium difficile[83]. Lemongrass oil followed by clove oil was highly effective against Candida albicans and its biofilms[84]. In one lab study, lemongrass oil inhibited the production of IL-1beta and IL-6[85]. Using multiple essential oils in combination can help with reducing chronic sinus infection symptoms.

 

Essential oils in combination can help to resolve chronic sinus infection symptoms in people with Lyme
Similar to getting sticky bubble gum off a bunch of clothes, essential oils can help people with Lyme to reduce sinus infection symptoms. Combining these oils can enhance their antimicrobial and antibiofilm properties. Patients that take these oils in a carrier oil under their tongue report reduced inflammation, improved sleep, and less brain fog. When encapsulated into a micronized particle called a liposome, these oils may be capable of even greater penetration into the sinus tissues when held in the mouth. In addition to inhibiting multiple harmful bacteria and fungi, these oils may also help with relieving uncomfortable emotions that are associated with elevated toxins and inflammation. Since some of these essential oils have cautions on their use, work with a Lyme literate essential oil practitioner to develop a proper, safe, and effective strategy for your condition.

 

– Greg

Next step: Come to the Getting Rid of Lyme Disease evening lecture on Monday June 6th at 6pm in Frederick, Maryland to learn more about essential oils, herbs, and treatments for healing from Lyme disease and co-infection symptoms.

https://goodbyelyme.com/events/get_rid_lyme

Also learn about effective remedies and treatments for relieving persistent symptoms of Lyme and co-infections including: cold laser, Frequency Specific Microcurrent, cupping, LED therapy, moxabustion, acupuncture, liposomal herbs, essential oils, bee venom, and more!

P.S. Do you have experiences where remedies or treatments helped you to overcome insomnia and brain fog caused by a toxic sinus infection? Tell us about it.



[1] Kahloun, Rim, Nesrine Abroug, Nadia Ben Abdessalem, Imen Ksiaa, Bechir Jelliti, Sonia Zaouali, Salim Ben Yahia, and Moncef Khairallah. “Orbital Infections: Review of 28 Cases.” La Tunisie Médicale 93, no. 11 (November 2015): 673–77. https://www.ncbi.nlm.nih.gov/pubmed/27126422
[2] Dlugaszewska, Jolanta, Malgorzata Leszczynska, Marcin Lenkowski, Agnieszka Tatarska, Tomasz Pastusiak, and Witold Szyfter. “The Pathophysiological Role of Bacterial Biofilms in Chronic Sinusitis.” European Archives of Oto-Rhino-Laryngology: Official Journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): Affiliated with the German Society for Oto-Rhino-Laryngology – Head and Neck Surgery, May 30, 2015. doi:10.1007/s00405-015-3650-5. https://www.ncbi.nlm.nih.gov/pubmed/26024693
[3] Yin, Xiuyun, Yuying Liang, Lijun Zeng, and Shuiping Chen. “A Case of Sinusitis Caused by Schizophyllum Commune and Bacteria in Acute Myelocytic Leukemia.” Clinical Laboratory 61, no. 11 (2015): 1799–1801. https://www.ncbi.nlm.nih.gov/pubmed/26722629
[4] Belova, E. V., T. A. Kapustina, A. N. Markina, and O. V. Parilova. “[The algorithm for laboratory diagnostics of chlamydial infection in the patients presenting with chronic sinusitis].” Vestnik Otorinolaringologii 80, no. 4 (2015): 61–64. https://www.ncbi.nlm.nih.gov/pubmed/26525325
[5] Brook, Itzhak. “Clostridial Infections in Children: Spectrum and Management.” Current Infectious Disease Reports 17, no. 11 (November 2015): 47. doi:10.1007/s11908-015-0503-8. https://www.ncbi.nlm.nih.gov/pubmed/26431956
[6] Ciobanu, Adela Magdalena, Tatiana Roşca, Camelia Teodora Vlădescu, Cecilia Tihoan, Mihaela Camelia Popa, Monica Claudia Boer, and Romică Cergan. “Frontal Epidural Empyema (Pott’s Puffy Tumor) Associated with Mycoplasma and Depression.” Romanian Journal of Morphology and Embryology = Revue Roumaine De Morphologie Et Embryologie 55, no. 3 Suppl (2014): 1203–7. https://www.ncbi.nlm.nih.gov/pubmed/25607407
[7] Giordano, A., M. Cohen-Salmon, B. Joly, and C. Maffiolo. “Nocardia Nova Sphenoid Sinusitis and Infratemporal Fossa Abscess.” European Annals of Otorhinolaryngology, Head and Neck Diseases 133, no. 2 (April 2016): 125–27. doi:10.1016/j.anorl.2015.09.004. https://www.ncbi.nlm.nih.gov/pubmed/26471040
[8] Brook, I. “Microbiology of Chronic Rhinosinusitis.” European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, April 16, 2016. doi:10.1007/s10096-016-2640-x. https://www.ncbi.nlm.nih.gov/pubmed/27086363
[9] Pesic, Zoran, Suzana Otasevic, Dragan Mihailovic, Sladjana Petrovic, Valentina Arsic-Arsenijevic, Dragan Stojanov, and Milica Petrovic. “Alternaria-Associated Fungus Ball of Orbit Nose and Paranasal Sinuses: Case Report of a Rare Clinical Entity.” Mycopathologia 180, no. 1–2 (August 2015): 99–103. doi:10.1007/s11046-015-9881-6. https://www.ncbi.nlm.nih.gov/pubmed/25749849
[10] Khodavaisy, S., H. Badali, S. J. Hashemi, F. Aala, M. Nazeri, S. Nouripour-Sisakht, M. S. Sorkherizi, K. Amirizad, N. Aslani, and S. Rezaie. “In Vitro Activities of Five Antifungal Agents against 199 Clinical and Environmental Isolates of Aspergillus Flavus, an Opportunistic Fungal Pathogen.” Journal De Mycologie Medicale, March 2, 2016. doi:10.1016/j.mycmed.2016.01.002. https://www.ncbi.nlm.nih.gov/pubmed/26948143
[11] Mahomed, Sharana, Sujith Basanth, and Koleka Mlisana. “The Successful Use of Amphotericin B Followed by Oral Posaconazole in a Rare Case of Invasive Fungal Sinusitis Caused by Co-Infection with Mucormycosis and Aspergillus.” IDCases 2, no. 4 (2015): 116–17. doi:10.1016/j.idcr.2015.10.001. https://www.ncbi.nlm.nih.gov/pubmed/26793475
[12] Davoudi, S., V. A. Kumar, Y. Jiang, M. Kupferman, and D. P. Kontoyiannis. “Invasive Mould Sinusitis in Patients with Haematological Malignancies: A 10 Year Single-Centre Study.” The Journal of Antimicrobial Chemotherapy 70, no. 10 (October 2015): 2899–2905. doi:10.1093/jac/dkv198. https://www.ncbi.nlm.nih.gov/pubmed/26188039
[13] Sridhar, Siddharth, Iris W. S. Li, Sally C. Y. Wong, and Kwok-Yung Yuen. “Circulating Cytomegalic Cells in a Patient with Advanced HIV Presenting with Cytomegalovirus Rhinosinusitis.” Journal of Clinical Virology: The Official Publication of the Pan American Society for Clinical Virology 65 (April 2015): 87–89. doi:10.1016/j.jcv.2015.02.009. https://www.ncbi.nlm.nih.gov/pubmed/25766996
[14] Nagata, Jason M., Gregory W. Charville, Jenna M. Klotz, Walter R. Wickremasinghe, Dylan C. Kann, Hayden T. Schwenk, and Christopher A. Longhurst. “Bordetella Petrii Sinusitis in an Immunocompromised Adolescent.” The Pediatric Infectious Disease Journal 34, no. 4 (April 2015): 458. doi:10.1097/INF.0000000000000564. https://www.ncbi.nlm.nih.gov/pubmed/25760569
[15] Yin, Xiuyun, Yuying Liang, Lijun Zeng, and Shuiping Chen. “A Case of Sinusitis Caused by Schizophyllum Commune and Bacteria in Acute Myelocytic Leukemia.” Clinical Laboratory 61, no. 11 (2015): 1799–1801. https://www.ncbi.nlm.nih.gov/pubmed/26732008
[16] Kuan, Edward C., Alexander J. Yoon, Tara Vijayan, Romney M. Humphries, and Jeffrey D. Suh. “Canine Staphylococcus Pseudintermedius Sinonasal Infection in Human Hosts.” International Forum of Allergy & Rhinology, February 16, 2016. doi:10.1002/alr.21732. https://www.ncbi.nlm.nih.gov/pubmed/26880481
[17] Swami, T., S. Pannu, Mukesh Kumar, and G. Gupta. “Chronic Invasive Fungal Rhinosinusitis by Paecilomyces Variotii: A Rare Case Report.” Indian Journal of Medical Microbiology 34, no. 1 (March 2016): 103–6. doi:10.4103/0255-0857.174126. https://www.ncbi.nlm.nih.gov/pubmed/26776131
[18] Saibene, Alberto Maria, Christian Vassena, Carlotta Pipolo, Mariele Trimboli, Elena De Vecchi, Giovanni Felisati, and Lorenzo Drago. “Odontogenic and Rhinogenic Chronic Sinusitis: A Modern Microbiological Comparison.” International Forum of Allergy & Rhinology 6, no. 1 (January 2016): 41–45. doi:10.1002/alr.21629. https://www.ncbi.nlm.nih.gov/pubmed/26345711
[19] Kale, Pratibha, Shivaprakash M. Rudramurthy, Naresh K. Panda, Ashim Das, and Arunaloke Chakrabarti. “The Inflammatory Response of Eosinophil-Related Fungal Rhinosinusitis Varies with Inciting Fungi.” Medical Mycology 53, no. 4 (May 2015): 387–95. doi:10.1093/mmy/myv001. https://www.ncbi.nlm.nih.gov/pubmed/25724204
[20] Doht, Franziska, Julia Hentschel, Nele Fischer, Thomas Lehmann, Udo R. Markert, Klas Böer, Wolfgang Pfister, Mathias W. Pletz, Orlando Guntinas-Lichius, and Jochen G. Mainz. “Reduced Effect of Intravenous Antibiotic Treatment on Sinonasal Markers in Pulmonary Inflammation.” Rhinology 53, no. 3 (September 2015): 249–59. doi:10.4193/Rhin14.300. https://www.ncbi.nlm.nih.gov/pubmed/26363166
[21] Ciobanu, Adela Magdalena, Tatiana Roşca, Camelia Teodora Vlădescu, Cecilia Tihoan, Mihaela Camelia Popa, Monica Claudia Boer, and Romică Cergan. “Frontal Epidural Empyema (Pott’s Puffy Tumor) Associated with Mycoplasma and Depression.” Romanian Journal of Morphology and Embryology = Revue Roumaine De Morphologie Et Embryologie 55, no. 3 Suppl (2014): 1203–7. https://www.ncbi.nlm.nih.gov/pubmed/25607407
[22] Nicoli, T. K., M. Oinas, M. Niemelä, A. A. Mäkitie, and T. Atula. “Intracranial Suppurative Complications of Sinusitis.” Scandinavian Journal of Surgery: SJS: Official Organ for the Finnish Surgical Society and the Scandinavian Surgical Society, February 29, 2016. doi:10.1177/1457496915622129. https://www.ncbi.nlm.nih.gov/pubmed/26929294
[23] Mahomed, Sharana, Sujith Basanth, and Koleka Mlisana. “The Successful Use of Amphotericin B Followed by Oral Posaconazole in a Rare Case of Invasive Fungal Sinusitis Caused by Co-Infection with Mucormycosis and Aspergillus.” IDCases 2, no. 4 (2015): 116–17. doi:10.1016/j.idcr.2015.10.001. https://www.ncbi.nlm.nih.gov/pubmed/26793475
[24] Janicki, Adam, and Geoffry Capraro. “Delayed Diagnosis of Subdural Empyema in a Septic Child.” Rhode Island Medical Journal (2013) 98, no. 8 (August 2015): 29–31. https://www.ncbi.nlm.nih.gov/pubmed/26230110
[25] Shinya, Yuki, Satoru Miyawaki, Hirofumi Nakatomi, Atsushi Okano, Hideaki Imai, Masahiro Shin, Kazuya Sato, et al. “Recurrent Cerebral Aneurysm Formation and Rupture within a Short Period due to Invasive Aspergillosis of the Nasal Sinus; Pathological Analysis of the Catastrophic Clinical Course.” International Journal of Clinical and Experimental Pathology 8, no. 10 (2015): 13510–22. https://www.ncbi.nlm.nih.gov/pubmed/26722566
[26] Fu, Katherine A., Peggy L. Nguyen, and Nerses Sanossian. “Basilar Artery Territory Stroke Secondary to Invasive Fungal Sphenoid Sinusitis: A Case Report and Review of the Literature.” Case Reports in Neurology 7, no. 1 (April 2015): 51–58. doi:10.1159/000380761. https://www.ncbi.nlm.nih.gov/pubmed/25873889
[27] Davoudi, S., V. A. Kumar, Y. Jiang, M. Kupferman, and D. P. Kontoyiannis. “Invasive Mould Sinusitis in Patients with Haematological Malignancies: A 10 Year Single-Centre Study.” The Journal of Antimicrobial Chemotherapy 70, no. 10 (October 2015): 2899–2905. doi:10.1093/jac/dkv198. https://www.ncbi.nlm.nih.gov/pubmed/26188039
[28] Livingston, Whitney S., Heather L. Rusch, Paula V. Nersesian, Tristin Baxter, Vincent Mysliwiec, and Jessica M. Gill. “Improved Sleep in Military Personnel Is Associated with Changes in the Expression of Inflammatory Genes and Improvement in Depression Symptoms.” Frontiers in Psychiatry 6 (2015): 59. doi:10.3389/fpsyt.2015.00059. https://www.ncbi.nlm.nih.gov/pubmed/25983695
[29] Schwitzguébel, Adrien J.-P., Peter Jandus, Jean-Silvain Lacroix, Jörg D. Seebach, and Thomas Harr. “Immunoglobulin Deficiency in Patients with Chronic Rhinosinusitis: Systematic Review of the Literature and Meta-Analysis.” The Journal of Allergy and Clinical Immunology 136, no. 6 (December 2015): 1523–31. doi:10.1016/j.jaci.2015.07.016. https://www.ncbi.nlm.nih.gov/pubmed/26329513
[30] Doht, Franziska, Julia Hentschel, Nele Fischer, Thomas Lehmann, Udo R. Markert, Klas Böer, Wolfgang Pfister, Mathias W. Pletz, Orlando Guntinas-Lichius, and Jochen G. Mainz. “Reduced Effect of Intravenous Antibiotic Treatment on Sinonasal Markers in Pulmonary Inflammation.” Rhinology 53, no. 3 (September 2015): 249–59. doi:10.4193/Rhin14.300. https://www.ncbi.nlm.nih.gov/pubmed/26363166
[31] Takabayashi, Tetsuji, Atsushi Kato, Anju T. Peters, Kathryn E. Hulse, Lydia A. Suh, Roderick Carter, James Norton, et al. “Excessive Fibrin Deposition in Nasal Polyps Caused by Fibrinolytic Impairment through Reduction of Tissue Plasminogen Activator Expression.” American Journal of Respiratory and Critical Care Medicine 187, no. 1 (January 1, 2013): 49–57. doi:10.1164/rccm.201207-1292OC. https://www.ncbi.nlm.nih.gov/pubmed/23155140
[32] Ramakrishnan, Y., R. C. Shields, M. R. Elbadawey, and J. A. Wilson. “Biofilms in Chronic Rhinosinusitis: What Is New and Where Next?” The Journal of Laryngology and Otology 129, no. 8 (August 2015): 744–51. doi:10.1017/S0022215115001620. https://www.ncbi.nlm.nih.gov/pubmed/26120023
[33] Olson, Merle E., Howard Ceri, Douglas W. Morck, Andre G. Buret, and Ronald R. Read. “Biofilm Bacteria: Formation and Comparative Susceptibility to Antibiotics.” Canadian Journal of Veterinary Research 66, no. 2 (April 2002): 86–92. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC226988/
[34] Tajudeen, Bobby A., Joseph S. Schwartz, and James N. Palmer. “Understanding Biofilms in Chronic Sinusitis.” Current Allergy and Asthma Reports 16, no. 2 (January 2016): 10. doi:10.1007/s11882-015-0591-4. https://www.ncbi.nlm.nih.gov/pubmed/26758863
[35] Doht, Franziska, Julia Hentschel, Nele Fischer, Thomas Lehmann, Udo R. Markert, Klas Böer, Wolfgang Pfister, Mathias W. Pletz, Orlando Guntinas-Lichius, and Jochen G. Mainz. “Reduced Effect of Intravenous Antibiotic Treatment on Sinonasal Markers in Pulmonary Inflammation.” Rhinology 53, no. 3 (September 2015): 249–59. doi:10.4193/Rhin14.300. https://www.ncbi.nlm.nih.gov/pubmed/26363166
[36] “MARCoNS Questions & Answers | Surviving Mold.” Accessed May 1, 2016. https://www.survivingmold.com/faq/marcons.
[37] Bilia, Anna Rita, Clizia Guccione, Benedetta Isacchi, Chiara Righeschi, Fabio Firenzuoli, and Maria Camilla Bergonzi. “Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach.” Evidence-Based Complementary and Alternative Medicine: eCAM 2014 (2014): 651593. doi:10.1155/2014/651593. https://www.ncbi.nlm.nih.gov/pubmed/24971152
[38] Low, W. L., C. Martin, D. J. Hill, and M. A. Kenward. “Antimicrobial Efficacy of Liposome-Encapsulated Silver Ions and Tea Tree Oil against Pseudomonas Aeruginosa, Staphylococcus Aureus and Candida Albicans.” Letters in Applied Microbiology 57, no. 1 (July 2013): 33–39. doi:10.1111/lam.12082. https://www.ncbi.nlm.nih.gov/pubmed/23581401
[39] Edmondson, Margaret, Nelly Newall, Keryln Carville, Joanna Smith, Thomas V. Riley, and Christine F. Carson. “Uncontrolled, Open-Label, Pilot Study of Tea Tree (Melaleuca Alternifolia) Oil Solution in the Decolonisation of Methicillin-Resistant Staphylococcus Aureus Positive Wounds and Its Influence on Wound Healing.” International Wound Journal 8, no. 4 (August 2011): 375–84. doi:10.1111/j.1742-481X.2011.00801.x. https://www.ncbi.nlm.nih.gov/pubmed/21564552
[40] Schelz, Zsuzsanna, Joseph Molnar, and Judit Hohmann. “Antimicrobial and Antiplasmid Activities of Essential Oils.” Fitoterapia 77, no. 4 (June 2006): 279–85. doi:10.1016/j.fitote.2006.03.013. https://www.ncbi.nlm.nih.gov/pubmed/16690225
[41] Rajkowska, Katarzyna, Alina Kunicka-Styczyńska, and Marta Maroszyńska. “Selected Essential Oils as Antifungal Agents Against Antibiotic-Resistant Candida Spp.: In Vitro Study on Clinical and Food-Borne Isolates.” Microbial Drug Resistance (Larchmont, N.Y.), April 19, 2016. doi:10.1089/mdr.2016.0001. https://www.ncbi.nlm.nih.gov/pubmed/27092733
[42] Comin, Vanessa M., Leonardo Q. S. Lopes, Priscilla M. Quatrin, Márcia E. de Souza, Pauline C. Bonez, Francieli G. Pintos, Renata P. Raffin, Rodrigo de A. Vaucher, Diego S. T. Martinez, and Roberto C. V. Santos. “Influence of Melaleuca Alternifolia Oil Nanoparticles on Aspects of Pseudomonas Aeruginosa Biofilm.” Microbial Pathogenesis 93 (April 2016): 120–25. doi:10.1016/j.micpath.2016.01.019. https://www.ncbi.nlm.nih.gov/pubmed/26821356
[43] Shin, Seungwon. “Anti-Aspergillus Activities of Plant Essential Oils and Their Combination Effects with Ketoconazole or Amphotericin B.” Archives of Pharmacal Research 26, no. 5 (May 2003): 389–93. https://www.ncbi.nlm.nih.gov/pubmed/12785735
[44] Rogawansamy, Senthaamarai, Sharyn Gaskin, Michael Taylor, and Dino Pisaniello. “An Evaluation of Antifungal Agents for the Treatment of Fungal Contamination in Indoor Air Environments.” International Journal of Environmental Research and Public Health 12, no. 6 (June 2015): 6319–32. doi:10.3390/ijerph120606319. https://www.ncbi.nlm.nih.gov/pubmed/26042369
[45] Furneri, Pio Maria, Donatella Paolino, Antonella Saija, Andrena Marino, and Giuseppe Bisignano. “In Vitro Antimycoplasmal Activity of Melaleuca Alternifolia Essential Oil.” Journal of Antimicrobial Chemotherapy 58, no. 3 (September 1, 2006): 706–7. doi:10.1093/jac/dkl269. https://jac.oxfordjournals.org/content/58/3/706.full
[46] Tsao, N., C.-F. Kuo, H.-Y. Lei, S.-L. Lu, and K.-J. Huang. “Inhibition of Group A Streptococcal Infection by Melaleuca Alternifolia (tea Tree) Oil Concentrate in the Murine Model.” Journal of Applied Microbiology 108, no. 3 (March 2010): 936–44. doi:10.1111/j.1365-2672.2009.04487.x. https://www.ncbi.nlm.nih.gov/pubmed/19709334
[47] Terzi, V., C. Morcia, P. Faccioli, G. Valè, G. Tacconi, and M. Malnati. “In Vitro Antifungal Activity of the Tea Tree (Melaleuca Alternifolia) Essential Oil and Its Major Components against Plant Pathogens.” Letters in Applied Microbiology 44, no. 6 (June 2007): 613–18. doi:10.1111/j.1472-765X.2007.02128.x. https://www.ncbi.nlm.nih.gov/pubmed/17576222
[48] La Torre, A., F. Caradonia, M. Gianferro, M. G. Molinu, and V. Battaglia. “ACTIVITY OF NATURAL PRODUCTS AGAINST SOME PHYTOPATHOGENIC FUNGI.” Communications in Agricultural and Applied Biological Sciences 79, no. 3 (2014): 439–49. https://www.ncbi.nlm.nih.gov/pubmed/26080478
[49] Nogueira, M. N. M., S. G. Aquino, C. Rossa Junior, and D. M. P. Spolidorio. “Terpinen-4-Ol and Alpha-Terpineol (tea Tree Oil Components) Inhibit the Production of IL-1β, IL-6 and IL-10 on Human Macrophages.” Inflammation Research: Official Journal of the European Histamine Research Society … [et Al.] 63, no. 9 (September 2014): 769–78. doi:10.1007/s00011-014-0749-x. https://www.ncbi.nlm.nih.gov/pubmed/24947163
[50] Caldefie-Chézet, F., C. Fusillier, T. Jarde, H. Laroye, M. Damez, M.-P. Vasson, and J. Guillot. “Potential Anti-Inflammatory Effects of Melaleuca Alternifolia Essential Oil on Human Peripheral Blood Leukocytes.” Phytotherapy Research: PTR 20, no. 5 (May 2006): 364–70. doi:10.1002/ptr.1862. https://www.ncbi.nlm.nih.gov/pubmed/16619364
[51] Tisserand, Robert, and Rodney Young. Essential Oil Safety p. 1495.502-1503
[52] Tisserand, Robert, and Rodney Young. Essential Oil Safety: A Guide for Health Care Professionals. Elsevier Health Sciences, 2013. pp. 1502-1503
[53] Kim, Yong-Guy, Jin-Hyung Lee, Soon-Il Kim, Kwang-Hyun Baek, and Jintae Lee. “Cinnamon Bark Oil and Its Components Inhibit Biofilm Formation and Toxin Production.” International Journal of Food Microbiology 195 (February 16, 2015): 30–39. doi:10.1016/j.ijfoodmicro.2014.11.028. https://www.ncbi.nlm.nih.gov/pubmed/25500277
[54] Naveed, Rasheeha, Iftikhar Hussain, Abdul Tawab, Muhammad Tariq, Moazur Rahman, Sohail Hameed, M. Shahid Mahmood, Abu Baker Siddique, and Mazhar Iqbal. “Antimicrobial Activity of the Bioactive Components of Essential Oils from Pakistani Spices against Salmonella and Other Multi-Drug Resistant Bacteria.” BMC Complementary and Alternative Medicine 13 (2013): 265. doi:10.1186/1472-6882-13-265. https://www.ncbi.nlm.nih.gov/pubmed/24119438
[55] Horváth, Györgyi, Noémi Jámbor, Erika Kocsis, Andrea Böszörményi, Eva Lemberkovics, Eva Héthelyi, Krisztina Kovács, and Béla Kocsis. “Role of Direct Bioautographic Method for Detection of Antistaphylococcal Activity of Essential Oils.” Natural Product Communications 6, no. 9 (September 2011): 1379–84. https://www.ncbi.nlm.nih.gov/pubmed/21941919
[56] Carvalhinho, Sara, Ana Margarida Costa, Ana Cláudia Coelho, Eugénio Martins, and Ana Sampaio. “Susceptibilities of Candida Albicans Mouth Isolates to Antifungal Agents, Essentials Oils and Mouth Rinses.” Mycopathologia 174, no. 1 (July 2012): 69–76. doi:10.1007/s11046-012-9520-4. https://www.ncbi.nlm.nih.gov/pubmed/22246961
[57] Khan, M. S. A., M. Zahin, S. Hasan, F. M. Husain, and I. Ahmad. “Inhibition of Quorum Sensing Regulated Bacterial Functions by Plant Essential Oils with Special Reference to Clove Oil.” Letters in Applied Microbiology 49, no. 3 (September 2009): 354–60. doi:10.1111/j.1472-765X.2009.02666.x. https://www.ncbi.nlm.nih.gov/pubmed/19627477
[58] Inouye, S., H. Yamaguchi, and T. Takizawa. “Screening of the Antibacterial Effects of a Variety of Essential Oils on Respiratory Tract Pathogens, Using a Modified Dilution Assay Method.” Journal of Infection and Chemotherapy: Official Journal of the Japan Society of Chemotherapy 7, no. 4 (December 2001): 251–54. doi:10.1007/s101560100045. https://www.ncbi.nlm.nih.gov/pubmed/11810593
[59] Smith-Palmer, A., J. Stewart, and L. Fyfe. “Antimicrobial Properties of Plant Essential Oils and Essences against Five Important Food-Borne Pathogens.” Letters in Applied Microbiology 26, no. 2 (February 1998): 118–22. https://www.ncbi.nlm.nih.gov/pubmed/9569693
[60] Nielsen, P. V., and R. Rios. “Inhibition of Fungal Growth on Bread by Volatile Components from Spices and Herbs, and the Possible Application in Active Packaging, with Special Emphasis on Mustard Essential Oil.” International Journal of Food Microbiology 60, no. 2–3 (September 25, 2000): 219–29. https://www.ncbi.nlm.nih.gov/pubmed/11016611
[61] Yap, Polly Soo Xi, Swee Hua Erin Lim, Cai Ping Hu, and Beow Chin Yiap. “Combination of Essential Oils and Antibiotics Reduce Antibiotic Resistance in Plasmid-Conferred Multidrug Resistant Bacteria.” Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 20, no. 8–9 (June 15, 2013): 710–13. doi:10.1016/j.phymed.2013.02.013. https://www.ncbi.nlm.nih.gov/pubmed/23537749
[62] Guerra, Felipe Queiroga Sarmento, Juliana Moura Mendes, Janiere Pereira de Sousa, Maria F. B. Morais-Braga, Bernadete Helena Cavalcante Santos, Henrique Douglas Melo Coutinho, and Edeltrudes de Oliveira Lima. “Increasing Antibiotic Activity against a Multidrug-Resistant Acinetobacter Spp by Essential Oils of Citrus Limon and Cinnamomum Zeylanicum.” Natural Product Research 26, no. 23 (2012): 2235–38. doi:10.1080/14786419.2011.647019. https://www.ncbi.nlm.nih.gov/pubmed/22191514
[63] Tisserand, Robert, and Rodney Young. Essential Oil Safety: A Guide for Health Care Professionals. Elsevier Health Sciences, 2013. p. 890.
[64] Tohidpour, A., M. Sattari, R. Omidbaigi, A. Yadegar, and J. Nazemi. “Antibacterial Effect of Essential Oils from Two Medicinal Plants against Methicillin-Resistant Staphylococcus Aureus (MRSA).” Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 17, no. 2 (February 2010): 142–45. doi:10.1016/j.phymed.2009.05.007. https://www.ncbi.nlm.nih.gov/pubmed/19576738
[65] Vázquez-Sánchez, Daniel, Marta L. Cabo, and Juan J. Rodríguez-Herrera. “Antimicrobial Activity of Essential Oils against Staphylococcus Aureus Biofilms.” Food Science and Technology International = Ciencia Y Tecnología De Los Alimentos Internacional 21, no. 8 (December 2015): 559–70. doi:10.1177/1082013214553996. https://www.ncbi.nlm.nih.gov/pubmed/25280938
[66] Rajkowska, Katarzyna, Alina Kunicka-Styczyńska, and Marta Maroszyńska. “Selected Essential Oils as Antifungal Agents Against Antibiotic-Resistant Candida Spp.: In Vitro Study on Clinical and Food-Borne Isolates.” Microbial Drug Resistance (Larchmont, N.Y.), April 19, 2016. doi:10.1089/mdr.2016.0001. https://www.ncbi.nlm.nih.gov/pubmed/27092733
[67] Selim, Samy. “Antimicrobial Activity of Essential Oils against Vancomycin-Resistant Enterococci (vre) and Escherichia Coli o157:h7 in Feta Soft Cheese and Minced Beef Meat.” Brazilian Journal of Microbiology: [publication of the Brazilian Society for Microbiology] 42, no. 1 (January 2011): 187–96. doi:10.1590/S1517-83822011000100023. https://www.ncbi.nlm.nih.gov/pubmed/24031620
[68] Khan, Mohd Sajjad Ahmad, Iqbal Ahmad, and Swaranjit Singh Cameotra. “Carum Copticum and Thymus Vulgaris Oils Inhibit Virulence in Trichophyton Rubrum and Aspergillus Spp.” Brazilian Journal of Microbiology: [publication of the Brazilian Society for Microbiology] 45, no. 2 (2014): 523–31. https://www.ncbi.nlm.nih.gov/pubmed/25242937
[69] Kovács, Judit K., Györgyi Horváth, Monika Kerényi, Béla Kocsis, Levente Emődy, and György Schneider. “A Modified Bioautographic Method for Antibacterial Component Screening against Anaerobic and Microaerophilic Bacteria.” Journal of Microbiological Methods 123 (April 2016): 13–17. doi:10.1016/j.mimet.2016.02.006. https://www.ncbi.nlm.nih.gov/pubmed/26853123
[70] Mith, Hasika, Rémi Duré, Véronique Delcenserie, Abdesselam Zhiri, Georges Daube, and Antoine Clinquart. “Antimicrobial Activities of Commercial Essential Oils and Their Components against Food-Borne Pathogens and Food Spoilage Bacteria.” Food Science & Nutrition 2, no. 4 (July 2014): 403–16. doi:10.1002/fsn3.116. https://www.ncbi.nlm.nih.gov/pubmed/25473498
[71] Chang, Yuhua, Lynne McLandsborough, and David Julian McClements. “Physical Properties and Antimicrobial Efficacy of Thyme Oil Nanoemulsions: Influence of Ripening Inhibitors.” Journal of Agricultural and Food Chemistry 60, no. 48 (December 5, 2012): 12056–63. doi:10.1021/jf304045a. https://www.ncbi.nlm.nih.gov/pubmed/23140446
[72] Sienkiewicz, Monika, Monika Łysakowska, Julita Ciećwierz, Paweł Denys, and Edward Kowalczyk. “Antibacterial Activity of Thyme and Lavender Essential Oils.” Medicinal Chemistry (Shāriqah (United Arab Emirates)) 7, no. 6 (November 2011): 674–89. https://www.ncbi.nlm.nih.gov/pubmed/22313307
[73] Uyttendaele, M., K. Neyts, H. Vanderswalmen, E. Notebaert, and J. Debevere. “Control of Aeromonas on Minimally Processed Vegetables by Decontamination with Lactic Acid, Chlorinated Water, or Thyme Essential Oil Solution.” International Journal of Food Microbiology 90, no. 3 (February 1, 2004): 263–71. https://www.ncbi.nlm.nih.gov/pubmed/14751681
[74] Inouye, S., H. Yamaguchi, and T. Takizawa. “Screening of the Antibacterial Effects of a Variety of Essential Oils on Respiratory Tract Pathogens, Using a Modified Dilution Assay Method.” https://www.ncbi.nlm.nih.gov/pubmed/11810593
[75] Bukovská, Alexandra, Stefan Cikos, Stefan Juhás, Gabriela Il’ková, Pavol Rehák, and Juraj Koppel. “Effects of a Combination of Thyme and Oregano Essential Oils on TNBS-Induced Colitis in Mice.” Mediators of Inflammation 2007 (2007): 23296. doi:10.1155/2007/23296. https://www.ncbi.nlm.nih.gov/pubmed/18288268
[76] Tisserand, Robert, and Rodney Young. Essential Oil Safety: A Guide for Health Care Professionals. Elsevier Health Sciences, 2013. p. 1518.
[77] Vázquez-Sánchez, Daniel, Marta L. Cabo, and Juan J. Rodríguez-Herrera. “Antimicrobial Activity of Essential Oils against Staphylococcus Aureus Biofilms.” Food Science and Technology International = Ciencia Y Tecnología De Los Alimentos Internacional 21, no. 8 (December 2015): 559–70. doi:10.1177/1082013214553996.
[78] Warad, Shivaraj B., Sahana S. Kolar, Veena Kalburgi, and Nagaraj B. Kalburgi. “Lemongrass Essential Oil Gel as a Local Drug Delivery Agent for the Treatment of Periodontitis.” Ancient Science of Life 32, no. 4 (April 2013): 205–11. doi:10.4103/0257-7941.131973. https://www.ncbi.nlm.nih.gov/pubmed/24991068
[79] Warnke, Patrick H., Alexander J. S. Lott, Eugene Sherry, Joerg Wiltfang, and Rainer Podschun. “The Ongoing Battle against Multi-Resistant Strains: In-Vitro Inhibition of Hospital-Acquired MRSA, VRE, Pseudomonas, ESBL E. Coli and Klebsiella Species in the Presence of Plant-Derived Antiseptic Oils.” Journal of Cranio-Maxillo-Facial Surgery: Official Publication of the European Association for Cranio-Maxillo-Facial Surgery 41, no. 4 (June 2013): 321–26. doi:10.1016/j.jcms.2012.10.012. https://www.ncbi.nlm.nih.gov/pubmed/23199627
[80] Khan, Mohd Sajjad Ahmad, Abida Malik, and Iqbal Ahmad. “Anti-Candidal Activity of Essential Oils Alone and in Combination with Amphotericin B or Fluconazole against Multi-Drug Resistant Isolates of Candida Albicans.” Medical Mycology 50, no. 1 (January 2012): 33–42. doi:10.3109/13693786.2011.582890. https://www.ncbi.nlm.nih.gov/pubmed/21756200
[81] Warnke, Patrick H., Stephan T. Becker, Rainer Podschun, Sureshan Sivananthan, Ingo N. Springer, Paul A. J. Russo, Joerg Wiltfang, Helmut Fickenscher, and Eugene Sherry. “The Battle against Multi-Resistant Strains: Renaissance of Antimicrobial Essential Oils as a Promising Force to Fight Hospital-Acquired Infections.” Journal of Cranio-Maxillo-Facial Surgery: Official Publication of the European Association for Cranio-Maxillo-Facial Surgery 37, no. 7 (October 2009): 392–97. doi:10.1016/j.jcms.2009.03.017. https://www.ncbi.nlm.nih.gov/pubmed/19473851
[82] Millezi, Alessandra Farias, Maria das Graças Cardoso, Eduardo Alves, and Roberta Hilsdorf Piccoli. “Reduction of Aeromonas Hidrophyla Biofilm on Stainless Stell Surface by Essential Oils.” Brazilian Journal of Microbiology: [publication of the Brazilian Society for Microbiology] 44, no. 1 (2013): 73–80. doi:10.1590/S1517-83822013005000015. https://www.ncbi.nlm.nih.gov/pubmed/24159286
[83] Doran, A. L., W. E. Morden, K. Dunn, and V. Edwards-Jones. “Vapour-Phase Activities of Essential Oils against Antibiotic Sensitive and Resistant Bacteria Including MRSA.” Letters in Applied Microbiology 48, no. 4 (April 2009): 387–92. doi:10.1111/j.1472-765X.2009.02552.x. https://www.ncbi.nlm.nih.gov/pubmed/19292822
[84] Khan, Mohd Sajjad Ahmad, and Iqbal Ahmad. “Biofilm Inhibition by Cymbopogon Citratus and Syzygium Aromaticum Essential Oils in the Strains of Candida Albicans.” Journal of Ethnopharmacology 140, no. 2 (March 27, 2012): 416–23. doi:10.1016/j.jep.2012.01.045. https://www.ncbi.nlm.nih.gov/pubmed/22326355
[85] Sforcin, J. M., J. T. Amaral, A. Fernandes, J. P. B. Sousa, and J. K. Bastos. “Lemongrass Effects on IL-1beta and IL-6 Production by Macrophages.” Natural Product Research 23, no. 12 (2009): 1151–59. doi:10.1080/14786410902800681. https://www.ncbi.nlm.nih.gov/pubmed/19662581

DISCLAIMER:-

The medical information on this site is provided as an information resource only, and is not to be used or relied on for any diagnostic or treatment purposes. This information is not intended to be patient education, does not create any patient-practitioner relationship, and should not be used as a substitute for professional diagnosis and treatment.

Please consult your health care provider, or contact the Two Frogs Healing Center for an appointment, before making any healthcare decisions or for guidance about a specific medical condition. The Two Frogs Healing Center expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. The Two Frogs Healing Center does not endorse specifically any test, treatment, or procedure mentioned on the site.

By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by the Two Frogs Healing Center. If you do not agree to the foregoing terms and conditions, you should not enter this site.

Leave a Reply

Your email address will not be published. Required fields are marked *